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Two simple algoriths are presented, suitable for the determination of ionization in 
plasmas with rapidly changing thermodynamic state, such as produced by laser irradiation 
of solid targets. The algorithms are designed to run with a large time step and yet be stable 
and reasonably accurate. 

INTRODUCTION 

The numerical modeling of plasmas using multicelled hydrodynamical techniques 
is by now well established. In general these numerical plasmas incorporate an appro- 
priate equation of state for the plasma conditions under study. Such equations of 
state are usually calculated under steady state equilibrium conditions, and then 
applied to a time varying hydrodynamic system. In many cases this does not lead to 
error, as relaxation times are frequently faster than the other time scales in the 
problem. This may not, however, be true of ionization phenomena, which often 
tend to be slow. Indeed under conditions of frozen ionization [l] we may actually seek 
to study the development of plasma in this nonequilibrium state. For this purpose it 
is desirable to have suitable algorithms for calculating ionization which use a mini- 
mum of computer mill-time and have minimal storage requirements, and can be 
included within a multicell hydrodynamics code. 

The simultaneous integration of the ionization rate equations with the equations of 
hydrodynamics introduces several complicating factors, particularly if a fluid cell 
technique is used. Considerations of computer storage dictate that only one time level 
be stored, so that neither Runge-Kutta nor predictor-corrector techniques can be 
used. Since the various rates are generally given by complicated analytic forms, these 
should clearly be calculated as infrequently as possible, i.e., on the hydrodynamic time 
scale. Under conditions of high density the ionization time scale may be much shorter 
than the hydrodynamic one, so that the ionization must be integrated separately from 
the hydrodynamics. A simple method of doing this, by integrating the ionization 
several times with a small time step within the hydrodynamic step, is satisfactory, but 
slow. A better alternative is to integrate with an algorithm which allows the use of the 
hydrodynamic time step directly. However, stability considerations influence the 
choice of such integration schemes. The ionization rate equation is similar in form to 
the spatial finite difference form of the diffusion equation which is well known to 
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have stability problems in an explicit form; so that an implicit scheme should be used. 
We have found that such an implicit form modified by an appropriate weighting 
factor can be used satisfactorily at the large hydrodynamic time step; the weighting 
factor being determined by comparison with an analytic solution. We have also found 
satisfactory a second algorithm-the two-stage scheme-which is based on a quasi- 
analytic solution of the rate equations for large time steps. These algorithms may be 
used for any process such as ionization which exponentially approaches a final value. 
Tt is required that the algorithm be accurate to second order for small step lengths and 
converge iteratively for large ones. Due to the exponential nature of the process, the 
algorithms give a satisfactory description over the whole range of step lengths, with 
sufficient numerical accuracy and unconditional stability. 

The ionization rate equations are a typical example of the general class of stiff 
equations [2]. Some standard methods for the numerical integration of these equations 
are well known [2]. However, since these have either large memory requirements 
(predictor-corrector schemes) or are slow (eigenvalue schemes) we have not con- 
sidered them for the present application. For straightforward solution of the ionization 
rate equations these methods have several advantages over those described in this 
paper. The algorithms described here should not be regarded as alternatives to those 
discussed by Gear [2] but rather ones designed especially for inclusion in multicelled 
fluid codes. 

The ionization and recombination rates must include multistep processes and a 
full analysis involves a complete description of each ionization stage with all its levels 
of excitation. The various processes may then be computed via a time dependent 
collisional radiative model [3]. Since this involves the calculation and integration of 
each interstate transition for each ionization stage, it is clearly a lengthy process, 
demanding of computer time. In this paper we assume the use of the averaged rate 
coefficients for each stage such as those derived from the collision limit approxima- 
tion [4]. As a result the accuracy of the various rate equations cannot be expected to 
be great and the accuracy demanded of the calculations is therefore not high. However, 
we must be careful that in relaxing the conditions of accuracy we do not allow the 
computational procedures to become unstable. 

THE IONIZATION RATE EQUATIONS 

The development of ionization in a plasma is described by the ionization rate 
equations, which give the relative ionic populations. Thus the relative population, qi , 
of the ith stage of ionization in a Lagrangian system is given by: 

dqi&. 
dt r+14i+1 - (Wi f a, + %4i-1 (1) 

where 9?‘i and 9: are the total recombination and ionization rates for the state i, 
respectively. These depend on the electron density in the following simple way: 

Yi = Sgl, ) 9& = Rline + Rzin:, (2) 
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where Si is the ionization rate coefficient and Rli and R,i are the two- and three-body 
recombination rate coefficients, respectively. In general Si , Rli , and Rzi depend on 
the electron temperature but vary only weakly with the other plasma conditions, such 
as the electron density. 

We can reduce the number of equations to be solved by introducing the ionization 
change across a step d, 

A, = qi - qi” + Ai-, , A, = 0, (3) 

where the qio’s are the values of qi at some arbitrary time, usually considered to be the 
start of a time step. In terms of these variables (1) can be written 

+ gi+Ai+l- (gi+l + Z) Ai + XAi-1 . (4) 

IMPLICIT METHODS 

The ionization rate equations (1) are simply an example of a restricted class of the 
more general family of rate equations. As is well known the solution of this type of 
problem leads to stiff equations for which standard methods are available. In general 
these are implicit multistep techniques, with a Newton iteration to the corrector [2]. 
However, as discussed earlier, computer storage requirements limit any scheme to 
only two steps, i.e., the trapezoidal method, the simple form of which can lead to 
spurious oscillation [5]. We have therefore sought to use a modified trapezoidal 
method for the ionization problem. In particular the tridiagonal nature of the equa- 
tions allow great simplification in the solution of the implicit equations. 

If we consider the electron density constant during the time step and write Eq. (4) 
in an implicit finite difference form with a variable weight factor, Wi : 

where values after n time steps are denoted by the superscript n. These equations are 
identical to those used in calculations of the diffusion equation and may be solved by 
the same well-known algorithm [6]. Since such implicit schemes are stable if the 
weights Wi satisfy 0 < Wi < 0.5, our choice of the weight function is determined by 
the condition for stability, and that for large rates the solution to Eq. (5) exactly 
match the analytic solution if A,,, = Ai- = 0. Thus: 

Wi = Min 
I 
0.5 
I/Ci - exp (--Cd) I (6) 

where C’i = (zZ’~+~ + q) At. We have found in practice that the use of this simple 
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weighting function allows a considerable gain in accuracy at large rates (Ci > l), and 
in particular allows the ionization step i + i + 1 to equilibrate properly. 

The rates Wi+l and Yi both depend on the electron density, which in turn is a 
function of the fractional ionization; indeed the effective charge of the ions 2 (= n&J 
is given by: 

274-l = 27” + c Ll, (7) 

where ni is the total ion density. As a result with a poorly chosen step length and 
initial conditions far from equilibrium, delays and overshoot can occur as shown in 
Fig. 1. In practice this difficulty can be overcome by a simple iteration of the electron 
density (Fig. 1). In performing this iteration we have found it beneficial to calculate 
the electron density for use in determining Wi and Yi consistently with Eq. (5). Thus 
we use: 
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FIG. 1. Comparison of results using the various algorithms with and without iteration. A strongly 
recombining plasma is shown: in this case carbon initially fully stripped at a temperature of 10 eV 
and density lO**/cm*. The time step chosen, 2.5 psec, was ridiculously large to demonstrate the 
limitations of the noniterated implicit and two-stage schemes. The first 10 time steps are shown. 
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A further improvement is obtained by linearizing Eq. (5) incorporating this term and 
including the terms in ,4,-r , di , and L$+~ directly in the implicit scheme. It can be 
clearly seen from Fig. 1 that this modification overcomes the problems associated 
with poorly chosen initial conditions. In general we have found that no more than one 
such iteration is required in a practical case. We may note that this iterated algorithm 
is the second order form of the general class described by Gear [2], if Newton iteration 
is used for the complete set Aj ; this, however, involves a considerably more complex 
matrix inversion than the scheme proposed here. 

Two STAGE SCHEME 

A useful analytic form which leads to a stable computational scheme is obtained by 
integrating the rate equation (4) for each stage independently of the others. Thus we 
consider: 

dAi/dt = (siqi - &+lqi+d 11, (9) 

and using Eq. (7) we obtain: 

A. _ Z&(1 - Oil 
z - (Z + BiDi) (10) 

where 

and 

Bi = (Siqfn - &+,d’+:,M& + &+I) 

Di = exp {-(Z + &)(& + R,+J n+At>. 

(11) 

(12) 

The algorithm is obtained by progressively calculating the set A6 from (10) for each 
stage of ionization. The new values of qi are then obtained recursively from the 
equations (2). A crude stability analysis (Appendix) shows that this algorithm is stable 
for all decaying solutions and relatively stable for growing ones. 

This algorithm, while not as accurate as the previous one, has the advantage that 
each ionization stage is treated separately allowing a different treatment for specific 
stages if desired: in fact, the algorithm was developed to use with a complete 
collisional-radiative description of specified ionization stages, which can thus each be 
treated separately with a consequent saving in computer time. The two stage scheme 
has proved very successful in practice and is more accurate than might at first be 
expected. The reason for this is that the processes of ionization and recombination 
are such that in practice one ionization step dominates at the expense of the others. 

As with the implicit scheme this algorithm can also give rise to spurious delays and 
overshoot with badly chosen initial conditions (Fig. 1). In this case the problems are 
associated with the fact that changes can only take place across one ionization stage 
per time step. Although the initial errors are large we note that they are rapidly 
damped. These errors are also inhibited by iteration (Fig. 1). 
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When iterative methods are used, we have found that the accuracy can be improved 
by using weighted values to calculate di . Thus we write. 

$ = 2” + (1 - IVJ c Llj 
i#j 

and 

&+I = 4:++1 - (1 - Wi) Ai+, 3 

4”i = qin + (1 - WJ A,-1 

(13) 

in Eqs. (10)-(12) in place of 2, qi+l, and qi , respectively. Clearly the weights W, 
must satisfy 0 < W, < 1 by the mean value theorem. In fact. for small rates (& ---f 1) 
Wi = -$ gives second order accuracy. For large values of the rates (Di -+ 0) the solution 
iterates to the steady state if Wi = 0. A suitable value with these properties which in 
addition reduces to the exact three stage solution in the limit 2 > 1 Bi 1 is: 

Wi = Min (0.5, Di) (14) 

which has proved satisfactory. In practice it is unlikely that one would use repeated 
iteration of this method, although a single iteration may be useful on occasion. If 
repeated iteration is used it can be shown that the iteration will converge. Either 
direct substitution or Newton’s method can be used; but the fastest method is obtained 
by using Newton’s method for the tridiagonal terms and direct substitution for the 
others, as one may then use the rapid tridiagonal matrix inversion procedure [6]. 

THE ENERGY LIMIT 

The step length, dt, is chosen so that any variations due to the expansion are 
relatively small during each interval. Thus ni is approximately constant during the 
integration of (1) and in the two stage scheme variation of ~1, is taken into acount by 
Eqs. (8) and (12). However, due to the energy required for ionization, the electron 
temperature may vary significantly over an integration step, causing a significant 
change in the appropriate rates when the ionization energy is included in the total 
electron energy balance. At large rates when the system is near equilibrium this may 
lead to an oscillation. 

Assume that at each ionization calculation the system equilibrates and consider an 
iteration for the temperature deviation dT, . The change in ionization at each 
iteration: 

& = (4ildTe) A Te. (15) 

and the next iteration of AT,’ is given by an energy balance: 

$ZkAT,’ N - C ($kT, + Vi) Aqi 

= - C (ZkTe + ViWqJdTe) A Te (16) 

where Z is the average ionic change. 
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Thus if 1 C ($ kT, + Vi)(dqi/dT,)l > 4 Zk the iteration will grow unstably. In a 
similar manner these iterations occur in the usual calculations and lead to a similar 
unstable growth. To prevent this oscillation growth we have introduced an “energy 
limit,” whose effect is to limit the amount of energy transfer which can occur in a 
given calculation step. 

If an incremental temperature rise AT,’ is calculated without the inclusion of the 
ionization changes the true incremental rise AT, is given by: 

SZkAT, = - 1 ($kT, + V-J Aqi + $ZkA T,‘. (17) 

Calculation of the fractional ionization change with increments AT,’ and AT, yields 
Aqi’ and Aqi , respectively, given by (15). Thus 

Aq, N Aqi’/( 1 + C (#kTe + Vi) Aq,‘/ #ZkAT,‘) . (18) 

Since ($kT, + Vi) Aq,’ is the heat exchange in ionization, we may regard Eq. (18) as 
specifying a limiting heat exchange SZkAT,‘; namely, that associated with the tem- 
perature change AT,‘, to prevent oscillation. In fact we may note that Eq. (18) is 
equivalent to a Newton-Raphson iteration term. 

In cases far from equilibrium some form of physical energy limit will apply (although 
it is unlikely to be particularly important under these conditions), due to the rapid 
variation of ionization rate with temperature. This will limit the energy transfer to 
some value 

AE - #Zk(AT,’ + aT,) (19) 

where 01 - 0.5. 
In practice to treat this situation generally we have found a suitable form for cy. to 

be given by: 

01 = 0.5 1 B&i + %I)/ c t4i + qi-A 

j$ = if A < 0.9 then (1.0 - exp [-(qi - qio)2/qiqio])/2 else 1.0 (20) 

where for the implicit method A is given by exp(-C) with C given by (6) and by (12) 
for the two-stage method. 

It should be noted that this instability only arises if there is an energy exchange 
between ionization and the electron temperature: in fact Eqs. (16) and (17) assumed a 
complete exchange. Clearly if the plasma is recombining radiatively and is optically 
thin this assumption does not apply. However, in laser plasmas this situation only 
occurs when the ionization processes are slow and the energy limit, given by (19), 
places no restriction on the ionization change. 

It is clear from the nature of the energy limit that we must estimate the electron 
energy balance including all other terms, such as ion-electron equilibration, thermal 
conduction, radiation transfer, etc. This is most conveniently done by calculating these 
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in the absence of ionization before treating the ionization last within a split time step 
scheme. If an equilibration scheme [7] is used for terms such as ion-electron transfer, 
some error in electron temperature may be incurred thereby, but the energy limit 
itself ensures that it does not exceed AT,‘, which is presumably limited by other 
constraints within the program to be small. 

In Fig, 2 the behavior of the electron temperature in a typical computational run is 
shown with and without the various energy limit terms. It can be clearly seen that only 
when the complete energy limit given by Ed. (20) is used is this instability eliminated. 
This result has been confirmed by subsequent satisfactory experience with this term. 
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FIG. 2. Demonstration of the effect of the energy limit. The plasma was an initially unionized 
carbon fiber heated by lOO-GW laser pulse. It can be seen that with no energy limit a catastrophic 
oscillation occurred very rapidly. With /3 = 1 in Eq. (20) some oscillation occurred, which became 
stronger later in the program. Only with fi given (20) is this oscillation prevented. 

The small inset diagram in Fig. 2 shows the behavior with no energy limit at all. It 
can be clearly seen that the integration rapidly becomes unstable and after four time 
steps causes overflow within the program. The inclusion of a simple energy limit given 
by Eq. (20) with j3 = 1 prevents this catastrophic instability, but some overshoot and 
subsequent oscillation occurs. With the value of /3 given in (20) the rise of ionization 
is not inhibited and little overshoot and no oscillation occurs. This solution sub- 
sequently remained stable throughout the course of integration, whereas that with 
/I = 1 subsequently developed a substantial oscillation. 
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DISCUSSION AND CONCLUSIONS 

The algorithms described in the previous sections have been regularly used in a 
number of programs to investigate the ionization development of laser-produced 
plasmas. In general the implicit algorithm has been used in cases where the average 
charge state and the ionic populations only are required, and the two-stage scheme in 
conjunction with a detailed atomic physics subroutine to study the excited state 
population levels in various ionization stages. Both algorithms have been incorporated 
into a standard one-dimensional Lagrangian code to model the laser plasma hydro- 
dynamics: Lagrangian codes are particularly suitable for this application as there is no 
advection term involving the transfer of ionization between cells. In addition the two- 
stage algorithm is used with the atomic physics package in an averaged self-similar 
hydrodynamics code to study population inversion growth in recombining plasmas in 
connection with an XUV laser study. In Figs. 3. and 4 we show an example of each of 
the applications. 

Figure 3 shows a typical example using the implicit scheme in the one-dimensional 
Lagrangian code. A Nd glass laser pulse of intensity 4 x 10zl W/cm2 lasting 
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FIG. 3. Plots of the ionization in a typical laser-solid-target computation. A laser pulse of in- 
tensity 4 x lOa’ W/cm* and duration 2.5 x IO-lo set is incident on a solid carbon surface. The 
ionization fractions at times 2.5 x lo-lo and 4.9 x IO-lo set after the initiation of the pulse are 
shown. It can be seen that only weak ionization (CI and CII) occurs behind the shock wave, but 
that strong ionization (CV, CVI, and CVII) is associated with the sharp thermal conduction front. 
The calculation was performed using a one-dimensional Lagrangian code with initial cell size 
6.25 x lo-‘cm. 
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FIG. 4. Plots of the ionization and recombination following the absorption of 5 J of energy in a 
spot of 20-pm radius on a solid carbon surface. The initial effective charge, Z, was 1O-S. The marked 
changes in the recombination rate at 0.4, 0.5, and 1.3 nsec are due to the use of the collision limit 
approximation for the rates. 

2.5 x lo-lo set is incident on a carbon slab: the Lagrangian cell size was 
6.25 x lo-’ cm. This case is a fairly typical laser-solid-target interaction. A shock 
wave runs into the solid ahead of the thermal conduction front. Only weak ionization 
occurs associated with the shock, but in the conduction heated zone ionization is 
nearly complete. The ionization further increases in the expansion fan as the density 
decreases, but thermal conduction maintains the electron temperature, so that the 
Saha equilibrium ionization fractions increase. This example is typical of slab targets 
in that the ionization is practically equilibrated throughout, except in the extreme 
low density regions of the expansion fan. Thus in practice it is not usually necessary 
to use a time dependent code for these calculations. They do, however, give a good 
test of such a code, since as noted earlier it is in such regions that the energy limit 
instability occurs. Furthermore, the prevalance of such regions in these flows requires 
that the code properly equilibrate-a condition ensured in this case by the weights Wi . 
In this example the time step was limited by the Courant-Friedrichs-Levy condition 
on the hydrodynamics; a total of 15,000 time steps was used for this calculation. 
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Our second example uses the implicit scheme with the similarity model hydro- 
dynamics to calculate the ionization in the expansion following the instantaneous 
deposition of 5 J of laser energy in a spot of 20-pm radius on a carbon slab. The 
Caruso-Salzmann [8,9] theory is used to calculate the initial plasma condition. In 
contrast to the previous case, the ionization in this case is strongly time dependent, 
since the characteristic hydrodynamic time scale is of the same order or less than the 
ionization time. In the early stages of the calculation the plasma rapidly ionizes, 
before strong cooling due to expansion induces recombination. At later times the 
rapid decrease in electron density leads to the production of a state of frozen ioniza- 
tion. The calculation of the populations in this frozen state can only be accomplished 
by a time dependent calculation such as that used here. We note that this calculation is 
stable throughout. 

We may briefly summarize our experience with these algorithms as follows: 

(1) For most calculations noniterative routines are satisfactory. 
(2) If the rates are described by the collision limit approximation (i.e., the 

populations of bound electronic states are not explicitly treated) the implicit method 
is best. The two-stage scheme is mainly used in conjunction with complete collisional- 
radiative calculations of designated ionization stages. 

(3) One should always include the energy limit if steady state conditions are 
approached. 

(4) In situations initially far from steady state where rapid equilibration is 
expected, one should try to adjust the initial time interval to ensure that the dominant 
ionization stage changes by only one per time step. Once the steady state is approached 
this condition can be relaxed. 

(5) If noniterated schemes are used a considerable saving in time is obtained by 
only performing the calculations for ionization steps whose total population (qi + qi+l) 
is significant. However, note that such a procedure used with the implicit method may 
lead to delays and oscillations similar to the two step (Fig. 1) in cases of rapid ioniza- 
tion change. 

APPENDIX: STABILITY OF THE TWO-STAGE ALGORITHM 

To consider the stability of the two stage scheme it is convenient to consider the 
propagation of errors in the terms di . Thus if din is the value obtained in the nth 
time step: 

qin = q: + f (A:-, - A:) = f (&, - &j + t$, 
j=l j=O 

(A.11 

where & is the Kronecker delta, and the values die are chosen to match the initial 
conditions. 
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Hence: 

p=zo+f~fj,i=f~~ij. 
j=l i j=o i 

The errors are propagated by the amplification matrix Gij 

(A4 

(A-3) 

Gii = (Z $ BJ2 DJ(Z + BiDi)‘, 

Gi,i*l = [Bi2Di(l - DJ + Z2(1 - Di) {!:} - ZB,Di In Di(l + {ii})]/(Z + BiDi)‘, (A.4) 
Gi,$ = [BtDi(l - Di) - ZBiDi In Di]/(Z + BgDi)2, j f i, i + 1, i - 1, 

where 
ai = Ri+l/(Ri+l i- Si> and pi = SJ(&+l + SJ. 

As is well known the condition for the stability of the algorithm is determined by 
the eigenvalues of the matrix Gij . However, in view of the difficulty in calculating 
these for general values of 2, Bi , oli , and /$ , we have found it necessary to adopt a 
simpler criterion for stability namely, that the matrix G must satisfy the conditions: 

(i) The growth in any error term Z:i due to a second Zj be less than unity, i.e., 

1 z:+l/ < 1 zy / ) i.e., / Gij I < 1 (A.5) 

for all values of i and j. 
(ii) The variance of the errors must decrease 

$ (z;+1)2 < C (‘i12. 
i 

64.6) 

Assuming the errors behave as though randomly distributed 

c (.Zin)2 2 c (Gij.Zjn)2. (A-7) 
2 i,i 

This condition is satisfied if 

T (W” < 1 for all .j. (A.@ 

A more convenient condition is obtained if all the errors have nearly the same value: 

c (Gijj2 < 1 for all i. (A.9) 

We consider the stability of the algorithm under the conditions (A5) and (A6). If 
these conditions are satisfied the algorithm is assumed to be absolutely stable. We may 
also consider the relative stability defined by the relative errors Zi’ = Zi/Ai . In 
common with most other workers we shall seek that the system be relatively stable for 
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growing solutions and absolutely stable for decaying ones. As can be seen from 
Eq. (10) this implies: 

growing solution: ,;+I - Lli” > 0, Bi > 0, relative stability; 

decaying solution: din+’ - Ain < 0, Bi < 0, absolute stability. 

The conditions (i) and (ii) may be similarly applied to relative stability and require 
that inequalities similar to (AS) and (A6) be satisfied for the matrix: 

The Behavior of the Matrix G 
We consider the functions: 

(A.lO) 

(A.11) 

qz (1 -D)D+?(l -D)-2xDlnD 
(x + 0)” , (A.12) 

#= (1 -D)D-xDInD 
(x + W2 ’ 

(A.13) 

in the range 0 d D B 1. The properties of these functions can be found in the usual 
way, but are most easily demonstrated graphically (Figs (A.l-A.3). 
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FIG. Al. Plot of the stability function / defined in Eq. (All) in the range 0 Q D < 1 as a 
function of the parameter X. Also shown is the locus of the extrema of 8. 
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FIG. A2. Plot of the stability function 9 defined in Eq. (Al 2) in the range 0 < D f 1 as a function 
of the-parameter X. Also shown is the locus of the extrema of 9. 

3.0 

H 

2.5 

20 

1.5 

10 

0.5 

0 

FIG. A3. Plot of the stability function .%’ defined in Eq. (A13) in the range 0 & D < 1 as a 
function of the parameter X. Also shown is the locus of the extrema of 2. 
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Hence since 0 < a, p < 1 we conclude that condition (i) is always satisfied, since 
the condition Z > q1 limits the negative values of x = Z/Bi to - co < x < - 1. The 
condition (ii) cannot be so simply established. However, numerical evaluation for a 
wide range of values of qi and Xi, j3i has shown this condition also to be always 
obeyed in practice. 

A simpler analysis can be performed for the matrix G’ with similar conclusions for 
the case x > 0. 

We therefore conclude that the two-stage algorithm is: 

(a) unconditionally absolutely stable for decaying solutions; 
(b) unconditionally relatively stable for growing solutions. 

In addition we may remark that the algorithm is absolutely stable in a growing mode 
unless xi < 1 and Di < 0.5, a situation only possible for the lowest ionization stage 
in a rapid ionizing plasma. 
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